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Abstract 

 
     In fixed rate state space models are the conventional models used to track the maneuvering 

objects. In contrast to fixed rate models, recently introduced variable rate particle filter (VRPF) is 

capable of tracking the target with a small number of states by imposing a Gamma distribution on 

the state arrival times while the object trajectory is approached by a single dynamic motion 

model.. It cannot estimate the position of targets in high maneuvering regions. Thus, multiple 

model variable rate particle filter (MM-VRPF) is utilized to overcome this shortage using various 

dynamic models. A weak point of particle filter is a phenomenon called degeneracy which even 

exists in MM-VRPF structure. In this study differential evolution method is exploited to improve 

the mentioned method and a novel structure called multiple model variable rate particle filter 

with sef-adaptive differential evolution (MM-VRPF with S-ADE) is introduced. The simulation 

results, particular in bearing only tracking achieved from a maneuvering target, revealed that the 

proposed structure has better performance while it maintains advantages of variable rate 

structure. 

 

Keywords: target tracking; multiple model variable rate particle filter; self-adaptive differential 

evolution  
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1. INTRODUCTION 

     Generally tracking is referred to obtaining kinematic parameters of a target during a time 

interval based on noisy observations. During last decade tracking maneuvering targets have 

experienced increasing progress and has attracted great attention owing to development of 

numerical techniques [1]. Estimation in nonlinear systems is a prominent issue in many 

applications. Bayesian filter is one of the most popular estimation techniques. From its 

perspective the objective is to estimate a stochastic process based on noisy observations. Since 

this filter does not have a closed solution, different methods have been proposed for its 

implementation in accordance with process and measurement model. With this regard for limited 

linear dynamic systems grid based filters are utilized [2]. Furthermore in case of a nonlinear 

system and Gaussian noise Extended Kalman Filter (EKF) is exploited [3]. Increase in 

nonlinearity of the system, the estimation results are distorted and the posterior probability 

function violates Gaussian state and destroys the estimations [3],[4]. Another practical solution 

for implementation of Baysian filters is using nonparametric methods among which the most 

important one is particle filter [5]. In the above mentioned filter posterior probability density 

function is estimated by a set consisting of weighted particles [3],[4].  

     In standard methods for target tracking and particularly in particle filter, the state sampling 

rate is determined proportionate to measurement rate. A modern and economic approach is 

utilizing variable rate particle filter (VRPF) where state arrival times (new states) are modeled as 

pseudo Markovian random process. Although this structure would be able to track different 

features of motion using linear curvilinear motion dynamic model, it is not capable of providing a 

precise estimation in regions with high maneuver. To address this problem a structure with 

multiple models might be employed which models target motion dynamics using a set of models 

and it is able to switch between these models. The modified structure is called multiple mode 

variable rate particle filter (MM-VRPF). Using this method continuous certain process proposed 

in [6],[7] will be maintained; meanwhile, they would be adapted to variable rate structure with 

multiple models, so that the tracking operation is improved. 

     The most essential weak point which must be taken into considerations in particle filters is 

degeneracy  phenomenon which results from increase in variance of weights [8]. In practice it has 

been observed that most of samples have normalized weight close to zero after a short time and 

only one sample has large weight. So the weights of some samples are calculated whereas they 

have negligible effect on final estimation which is a waste of power. To address this issue 

resampling is utilized. In resampling stage weighted samples at the end of a step are sampled N 

times. The chance of each sample for being selected depends on its weight. As a result, in this 

step samples with greater weights are copied several times and samples with smaller weights 

would be eliminated. At the end of this step a non-weighted estimation of joint posterior 

distribution is achieved. Numerous algorithms have been proposed for resampling; in [9] a good 

comparison is presented. Resampling method improves degeneracy [10]; however, it has a crucial 

weakness called sample impoverishment. It is due to repeat of samples with large weight. It 

causes all samples to have the same history after a specific time step. In this paper differential 

evolution optimization algorithms are utilized to mitigate degeneracy an a new set of filters are 

introduced; multiple model variable rate particle filter with differential evolution (MM-VRPF 

with S-ADE). In this algorithm particles are optimized using self-adaptive differential evolution 
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algorithm and they are combined with the random set obtained by probability distribution in 

variable rate structure so that better solution is derived. 

     The simulation results illustrated that proposed structure increases efficiency and precision in 

path estimation compared to MM-VRPF. 

 

2. VARIABLE RATE SAMPLING AND MODELING MOTION 

2.1  Variable Rate Particle Filter 

This paper focuses on improving tracking operation and increasing estimation precision in 

MM-VRPF. In order to understand other sections here a brief review on structure of variable rate 

particle filter is provided. More details might be found in [7],[11]. 

In standard constant rate stat-space models a state variable 
tx  is defined which evolves 

during time with t index. The generic model is considered between time {0 and T}. variable state 

sequence follows a Markovian process and they are generated based on density function shown in 

equation (1) [6],[7].       

1 1( ),k k k k kx p x x                                                                       (1)                                                                                                      

Where kx  is State with variable rate is defined in the form of ( , )k k kx    , k  is a discrete index 

and k and 
k   respectivelydenote new state arrival in i

th
 state and a vector of target parameters. 

In a variable rate model state assignment is not synchronous with observations. Thus, the 

optimum solution is when state positions (new states) are dependent on probability function. As a 

matter of fact, it is assumed that a observation is independent of all data points except 

neighboring points. Similarity probability function for consecutive values of t  could be defined 

as equation (2) [7]. 

0:(y ) (y )
tt t Np x p x                                                                              (2) 

Where  0:;k ( )
tN l tx x N x   and ty is the observation. 

It is noteworthy that includes all states close to observations at times t. A process in the form 

of (x )
tt t Nf 

  is defined which might be utilized for calculating probability function. It is 

assumed that the largest and smallest elements of neighboring set are 
tN   and 

tN  , respectively. 

Finally, common density of observations and states could be demonstrated as shown in equation 

(3) according to Markovian assumptions [7]. 

  0: 0: 0 1

1 0

( , ) ( ) ( ) (y ),
t

k T

k T l l t N

l t

T

p x z p x p x x P x

K N



 







                                            (3)                                                                                       

 Where TK N   guarantees a complete neighborhood for calculating density observed at the end 

of  T time index. 

     Defining 
0: 0( ,..., )t tz z z

 
as observation and  

00:N
( ,..., )

t tN
x x x  as desired target states (which is 

always a random variable), it can be said that at each time step t, VRPF structure will result in an 
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estimation of optimized filtering distribution. It is denoted (as shown by equation (2) [7]) in the 

form of a combination of 
pN multi dimensional Dirac delta each of which illustrates a particle. 

0: 0:N : 0:N
1

(X , ) ( )
d

t t t

N
i i

t t to N
i

p N z x x   





                                          (4) 

Where i

t  
is the weight of i

th
 particle. The above equation calculates at state arrival time by 

performing updating operation based on equation (5) [7] and 
1

i

tw 
. 

1 1

1 1

1:N

1

0:1:N

( ) ( )

( , )

t t t t

t t t

i i i

t N N Ni i

t t
i i

tN N

p y x p x x

q x x y
 

 
 

  
 







                                                    (5) 

As mentioned before in a conventional variable rate particle filter merely one model is 

exploited to estimate position of the target. According to [6] a CL model would be an appropriate 

choice in such filter for modeling target motion.  

2.2  Multiple Model Variable Rate Particle Filter 

     In standard VRPF method new state arrival time and target motion are configured using a 

united model. However, during a maneuver motion parameters and arrival times are diverse due 

to the nature of targeting problem. On this basis usually state arrival times and target maneuver 

parameters are not estimated with a unique model. To improve the structure a multiple model 

variable rate structure is proposed. In this structure arrival times and maneuver parameters are 

modeled by a model consisting of a triplet set of parameters which improves targeting operation. 

In this method another state variable ( )km  is added to state vector of VRPF. It shows dynamic 

motion mode and is denoted by equation (6) [7]. 

[ , , ] [1,..., j]k k k k kx m m                                                            (6) 

Where j means all states. Each targeting plan or program is used for demonstration of a set of 

dynamic states. Each state particularly demonstrates a specific feature of the target maneuver. In 

this paper we deal with a model consisting of 3 states so j is selected to be 3. It is worth 

mentioning that increase in number of states does not necessarily lead to improvement of filter 

performance. Thus, selecting the states in a multiple model system must be a function of desired 

complexity [7]. The desired structure is demonstrated in equation (7) [7]. 

1 1 1

1 1 1

( ) ( , , , )

( ) p( , )

k k k k k k k

k k k k k

p x x p m

p m m m

   

 

  

  





                                            (7)  

 

     Where
1( )k kp m m 

is the probability of state transition. It shows the probability of transition 

from one state to another and staying in a specific state. These probabilities are demonstrated by 

state transition matrix p as shown in equation (8) [7]. 
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11 1

1

r

r rr

p p

p

p p

 
 


 
  



  



                                                                                (8) 

Where ,{h, l} {1,..., r}hlp   demonstrates values of  probability of  transition from h  to l . 

Practically matrix p is directly determined based on desired target maneuver. In [14] some 

specific methods for selecting p are mentioned. Moreover, some methods for online calculation 

of p matrix could be found in [13]. 

Consequently for target motion kinematic vector 
k  can be illustrated by 

, , ( ) ( ) ( )P K T KL L V k k z k   
 
  

 [7] where 
,P KL and 

,T KL could be denoted in the form of Gaussian 

distribution [7]. 

       Furthermore,
 1 1( , )k k kp m     

in equation (7), is conditional to discrete variable mode. The 

previous arrival time is shown by a shifted Gamma distribution [7]. 

Now a combination of multiple model structure with variable rate models is presented. 

Similar to standard structure in the multiple model variable rate structure mentioned steps are 

taken to estimate the state. 

 Initial setting 

In this stage values are assigned to all particles according to a determined distribution. At 

time t=0, 
pN samples are selected; then, selected samples are weighted based on their similarity to 

actual value in the form of equation (9). 

0

1
, 1,...,i

t p

p

w i N
N

                                                                          (9)                                                                                                  

 Where 
0

i

tw 
 is particle weight at time t=0. 

 Propagation step 

In this step as soon as new state arrives, 
pN samples are selected based on q(.) distribution 

which plays the role of previous state distribution. q(.) distribution is stated as shown by equation 

(10) [7]. 

1 1 1 1
:1:N 1:

( , ) ( )
t t t t t t

i i

o tN N N N N
q x x y p x x     

    
                                         (10) 

 Updating the particle  weights 

Updating is performed based on simplified form of equation (5). In this equation if previous 

distribution q(.) is utilized, a simpler equation in the form of equation (11) is derived [7] which is 

exploited for calculating particle weights , 1,..., Ni

t Pw i  . 

1 ( )
t

i i i

t t t Nw w p y x
  
                                                                        (11)                                                                                                       



International Journal of Contemporary Applied Sciences                Vol. 3, No. 9, September 2016   

(ISSN: 2308-1365)                                                                                               www.ijcas.net 

 

6 

 

Thus, ( )
t

i

t Np y x probability in updating operation of i

t  could be defined in the form of 

equation (12). 

( ) ( )
tt N t tp y x p y 

                                                                           (12) 

Finally, it could be concluded that posterior probability function 
0:( , | )t t tp x y

N N  
is  estimated   

by associated weight vectors 1{ } pNi

t iy  and particles 1{ } p

t

Ni

N ix  . Afterwards, if 2

1

ˆ 1/ (w )
pN

i

eff t

i

N


 

 

is less than 

default threshold value,  resampling operation will be done. 

MM-VRPF structure does not need regeneration stage whereas it is necessary in VRPF 

framework; thus, it considerably reduces computational load [7]. 

3.3 Multiple Model Variable Rate Particle Filter With  Self-Adaptive Differential Evolution 

Degeneracy phenomenon is a weakness of particle filter. This phenomenon is resulted from 

variance of sample weights and it is still a problem in MM-VRPF structure. 

Many efforts have been made to generate a new group of particles which are able to generate 

higher weights such that these particles are substituted for particles with much smaller weights. 

In this paper, self- adaptive differential evolution algorithm [14] is exploited to obtain such 

particles. Differential Evolution (DE) has been shown to be a powerful evolutionary algorithm 

for global optimization in many problems. Self-adaptation has been found to be high beneficial 

for adjusting control parameters during evolutionary process, especially when done without any 

user interaction [16].  These particles have the most proper unique values. With this regard, 

fitness function in S-ADE  is a function for calculating the weight of a particle. 

 

4. ALGORITHM 

In Fig. 1 the result of merging DE and MM-VRPF algorithm is presented. 

 Input: Initialization 

1:     Set t = 0 

2:     For 1 pi N  ,
0 0( )ix p x  draw equally weighted samples  

         from the predefined. 

 initial state 

4:     distribution and set t = 1 with optimal states which  is calculated  

        by  Self adaptive differentia Evolution. 

Propagation step 

5:     Set k N t   

6:      for 1 pi N   

7:         -  While the neighborhood i

tN  is incomplete  
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8:        * Set k = k + 1 and draw samples form the proposal  

       distribution                      

9:        
1( )i

k k kx q x x  until  .k t                   

10:     /// The particles are optimized by Differential  

        evolution. 

11:       /// Mixing particles which is achieved from two  

         pervious steps with the  parameter 
dN .   

 

 Weight update step 

12:            Calculate the particle weights  

          1 1

1 1

1:N

1

0:1:N

( ) ( )

( , )

t t t t

t t t

i i i

t N N Ni i

t t
i i

tN N

p y x p x x
w w

q x x y

 
 

  
 







     

 13:            Normalize the  particle weights. 

 Resampling step 

 14:            Resample 
1

,
p

t

N
i i

N t
i

x w


if effective sample size  

          
2

1

1ˆ

( )
p

eff N

i

t

i

N

w






 , is Below a  preset threshold.   

15:             Set 1t t    

16:  Iterate through Propagation step 

Fig. 1.  MM-VRPF with S- ADE 

The difference between proposed mechanism and MM-VRPF algorithm is that it selects a 

number of particles based on differential evolution algorithm instead of applying a probability 

distribution. Subsequently, 
dN optimized samples are combined with other remained samples 

derived from probability distribution and constitute a set of optimized samples which can be 

utilized in next steps of algorithm structure. In other words, samples are optimized by differential 

evolution algorithm. Then, they are combined with random set obtained by probability 

distribution so that samples result in better response. 

 

5. SIMULATION  

In this section a comparison between proposed method and VRPF and MM-VRPF methods is 

performed. The practical application of our method in trajectory tracking of maneuvering target 

specially its bearing-only will be investigated. On this basis, for observation y at time t equation 

(13) can be written [15]. 
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1 10

2 20

arctan( )t t

l l
y v

l l


 


                                                            (13)                                                                                                 

Where  arctan(.) demonstrates nonlinear relationship, is sensor noise and  10 20

T
l l denotes the 

position of sensor [15]. 

A. scenario  

In Fig. 2 desired trajectory is depicted. According to mentioned scenario in [15] target and 

observer start their motion from origin with constant velocity of 4 and 5 knotes, respectively and 

courses of -150 and 140, respectively. After that, the target executes a maneuver with constant 

turn rate 24
o
/min between 20 and 25 minutes. Finally, the same course will be maintained till the 

end. After movement, observer experiences a maneuver in (12-16) time interval with constant 

turn rate of 30 / min  to reach 20 course. For this scenario it is assumed that the total number of 

observations is 40 and the period of observation is 1 minute.  

 

Fig 2:  A true trajectory for a maneuvering target 

4.1  Simulation results and analysis 

      There are two efficiency measures for evaluation of tracking filters; time averaged root  mean 

square position error    ( )RMSE and instant root mean square position error (RMSE)t
 

are mentioned in equation (14). The achieved values for these two measures are obtained by 

Monte Carlo method with L=100 runs [7]. 

 

   

2

2

2 2

1 1 2

1

2 2

1 1 2

1 1

1
( ) ( )

1
( ) ( )

L
i i i i

t t t t t

i

T L
i i i i

t t t t

t i

RMSE l l l l
T

RMSE l l l l
LT



 

   

   





 

 

                                     

(14)                                                                         

Where T is the index to the last observation. Moreover, for executing i
th

 run i

tl


and i

tl values 

respectively state estimated and actual positions at time t.  
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To observe the behavior of mentioned methods in description of target motion, initial 

conditions are set using actual values. For instance, Gaussian value with ( 1.5)   for bearing and 

( 100 )r m   
for range are chosen. Additionally, considering unique features such as displacement 

parameters and velocity of the target, the values of  P  transition matrix are selected as shown in 

equation (15) [7],[15]. 

  
0.5 0.25 0.25

0.35 0.45 0.2

0.35 0.2 0.45

P

 
 
 
 
 
 

                                                                 (15)                                                                                      

Table 1 represents sojoum time distribution parameters for MM-VRPF and VRPF [9]. This 

table considers 3 states; (n=1) for modeling direct form of motion and (n=2,3) to model motion 

maneuvers of target. The multiple model structure is able to switch between these states. 

 

TABLE 1: MM-VRPF and VRPF parameters for the desird scenario.
 

          MM-VRPF     VRPF 

MOD.1 MOD.2,3 

, ,,T n T n   

, ,,p n p n   

,n n   

n  

(0,100)  

(0,500)  

(1.5,4)  

(0)  

(0,100) 

( 1100,3000)  

(0.5,0.35) 

(0.5) 

(0,100) 

(0,5000) 

(0.5,6.5) 

(0) 

 

In Fig. 3 sections (a), (b) and (c) explain state arrival time and trajectory points generated by 

the VRPF, MM-VRPF and MM-VRPF with S-ADE respectively. Fig. 3(b) and 3(c) show the 

MM-VRPF and MM-VRPF with S-ADE structre are capable of  locating frequent states at  

bearing region while using a parsimonious state representation for the smooth regions of the 

trajectory.  
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Fig 3:  Trajectories and states  of  a particle generated by (a) the VRPF, (b) the MM-VRPF and 

(c) the MM-VRPF with S-ADE. 
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Fig. 4 shows 
tRMSE  values for 3 mentioned structure. In Fig. 4(a) the diagram of 

tRMSE  

versus 2000pN   and  in Fig. 4(b) versus 8000pN   are shown  using 40 observations for 

mentioned scenarios. In addition, numerical values of RMSE  for 2000pN   and  8000pN  could be 

seen in table 2. Investigating values presented in Table 2 together with 
tRMSE  diagram in Fig. 4, 

the superiority of  proposed structure could be concluded. 

 

 

 

 

Fig 4: tRMSE versus time t for true initials by (a) 2000pN  , (b) 8000pN  . 

TABLE  2.  RMSE for varying particle size obtained by using true initials for the desird 

Scenario. 
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 VRPF MM-VRPF MM-VRPF 

with S-ADE 

2000pN   204.12 190.26 126.86 

8000pN   201.17 184.67 119.56 

 
 
6.  CONCLUSION 

     In this paper a new approach to merging S-ADE structure with MM-VRPF, is proposed. In 

this approach MM-VRPF with S-ADE structure  is suggested to improve degeneracy 

phenomenon which is a consequence of increase in sample weights. This method combines 

optimized samples generated by S-ADE algorithm with other samples obtained from probability 

distribution applied to variable rate structure. As a result an optimized set of samples is achieved 

which will be used for estimation. The simulation results revealed relative superiority of this 

method in tracking high maneuver points of targets. 
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